Noether Networks: Meta-Learning Useful Conserved Quantities
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Noether Networks meta-learn inductive biases in the form of useful conserved quantities that improve predictions when optimized inside the prediction function.

Motivation and background

Successful inductive biases often exploit symmetries, which are
often unknown and hard to discover, or difficult to encode.

We learn conserved quantities, inspired by Noether’s Theorem:

For every continuous symmetry property of a dynamical
system, there is a corresponding conservation law.

Tailoring framework [1]: impose inductive biases at prediction time
e Optimize unsupervised tailoring loss inside prediction function

e Fine-tune the model to the particular query

e Drawback: tailoring losses must be hand-coded

Prediction and training with neural Noether loss
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Imposing meta-learned inductive biases improves video prediction quality.

Learning from raw pixels in real-world video prediction

e Physics 101 [5]: colliding objects

e Grad-CAM heatmaps: embeddings
attend to relevant pixels (right)

e Improves performance, esp. with
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Optimizing Noether conservation loss at prediction time Theoretical advantages: enforcing conservations

Theorem 1. Let p € NT. Then, for any § > 0, with probability at least 1 — & over an iid draw of n
examples ((x;,y:))_,, the following holds for all € ©:

e < © \/§1n<max<vz, 1)) + £1n<22f<c1-1/f’w> /8 | e

where £ = m if gs(fo(x)) = gg(x) for any x € R and 0 € ©, and & = d otherwise.
Each conservation law decreases ¢ by 1, lowering the train-test gap.
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Noether Nets recover known conservation laws
Noether loss is parameterized as symbolic formula in a simple DSL.

Method Description RMSE Method Description = RMSE
Vanilla MLP N/A 0.0563 Vanilla MLP N/A 0174
Noether Nets  p? — 2.99cos(q) 0.0423 Noether Nets  ¢* +1.002p> .0165

True H [oracle] p? — 3.00cos(q) 0.0422 True H [oracle] ¢? +1.000 p*> .0166
Ideal pendulum Ideal spring
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Real (dissipative) pendulum system

Improving predictions with controlled dynamics
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